Лечение диабета стволовыми клетками
Стволовые клетки могут восстановить практически любые ткани и органы, пострадавшие от болезни или травмы. Сейчас благодаря мезенхимальным стволовым клеткам проводят успешное лечени..
| Грипп: лечение и профилактика зимой
С наступлением холодного времени года увеличивается риск заражения ОРВИ. Грипп, лечение которого должно быть направлено на устранение причины заболевания, часто вызывает тяжелые ос..
| Успешное лечение остеохондроза – совместная работа врача и пациента
Среди различных патологий позвоночника остеохондроз занимает одно из первых мест. При данном заболевании нарушается структура и функциональность позвонков, а также межпозвоночных д..
| Новое направление в лечении глиобластомы мозга
Глиома мозга развивается из нейроэктодермальных клеток. Заболевание имеет четыре степени злокачественности. Относительно доброкачественные опухоли называются астроцитомами. Самый о..
| Новый способ борьбы со старением создаст рынок препаратов объемом $20 млрд
Новый тип препаратов против связанных со старением болезней, которые сейчас разрабатывают четыре крупных биотехнологических компании, может вытеснить менее эффективные аналоги..
| Биологи создали из клеток человека искусственные тромбоциты, которые не отторгает организм
Биологи из Университета Киото создали из клеток крови пациента искусственные тромбоциты, которые не вызывают отторжения у организма. Открытие поможет лечить бол..
| Медики представили метод, который может навсегда усыпить раковые клетки
Мельбурнские ученые открыли новый тип противоракового препарата, который может поместить раковые клетки в постоянный сон. Причем этот метод не грозит вредными п..
|
| Эндоскоп будущего смотрит в сосуды пациентов лазерным волокном
Эндоскоп будущего смотрит в сосуды пациентов лазерным волокном
Эндоскоп будущего смотрит в сосуды пациентов лазерным волокном
Около 50 лет назад в медицине был совершён прорыв - появились эндоскопы. А теперь - очередной рекорд: эндоскоп научился работать без анестезии, получать подробнейшие изображения и заглядывать даже внутрь сосудов - а пациент всего этого может и не заметить. Скажете, фантастика? Уже нет.
Сотрудники центра фотомедицины Уэллмена (Wellman Center for Photomedicine) при Главном госпитале Массачусетса (Massachusetts General Hospital - MGH) разработали технику, позволяющую осматривать в микроскопическом масштабе внутренние поверхности органов. Интересно, что новая разработка может пригодиться не только для осмотра, скажем, пищевода, но и для обследования кровеносных сосудов.
По словам руководителя проекта Бретта Бума (Brett E. Bouma) из Массачусетского технологического института (Massachusetts Institute of Technology - MIT), иногда диагностика заболевания на ранних стадиях для медика часто сравнима с обнаружением иголки в стоге сена, особенно в тех случаях, когда необходимо провести микроскопический осмотр труднодоступных областей организма. Однако новая методика позволяет решить эту проблему.
Техника, которую разработали в MGH, называется оптическо-частотным доменным отображением (optical frequency-domain imaging - OFDI). Устройство представляет собой миниатюрный щуп, внутри которого находится тонкое оптическое волокно (диаметром меньше человеческого волоса). По нему передаётся лазерный луч, который фокусируется с помощью линзы и попадает на дифракционную решётку (с периодом тысяча штрихов на миллиметр).
На дифракционной решётке луч разлагается на составляющие с разной длиной волны. Отражённые лучи регистрируются, и характер отражения каждого из них анализируется отдельно. В результате получаются детализированные снимки поверхностей, которые можно делать непрерывно в процессе передвижения этого миниатюрного эндоскопа.
Изображение, которое формируется прибором, очень чёткое - его разрешение превышает в десять раз разрешение самых точных современных миниатюрных эндоскопов. Однако главное преимущество OFDI в том, что с ним можно получать не только плоские, но и трёхмерные снимки. Дополнительное измерение формируется за счёт поворота кончика эндоскопа (вращение передаётся ему через специальный механизм).
Чтобы убедиться в работоспособности прибора, учёные MGH провели его апробирование на живых свиньях. На подробное сканирование поверхности пищевода протяжённостью в 4,5 сантиметра исследователи потратили не так уж мало - около 6 минут, - зато они смогли получить подробную картину со всеми структурными особенностями и рисунком кровеносных сосудов.
Помимо этого исследователи провели осмотр коронарных артерий. Результаты осмотра (который проходил с теми же животными и также in vivo) сравнили с данными других обследований. В итоге оказалось, что с помощью OFDI можно вполне успешно проводить обследования такого рода - изображения, полученные этим методом, позволяют без проблем отличить здоровые ткани от повреждённых.
А видеозапись перемещения эндоскопа внутри сосуда можете посмотреть тут (файл AVI; 2 мегабайта) или тут (файл AVI; 1,13 мегабайта).
Обсуждая эффективность аппарата, исследователи заявляют, что ему можно найти применение, например, в диагностике рака пищевода на ранних стадиях. Они утверждают, что скоро будет применяться более мощная компьютерная обработка сигналов, и время осмотра уменьшится в шесть раз.
Другая область применения - это, конечно же, исследование кровеносных сосудов, в частности, для обнаружения на их внутренней поверхности бляшек, вызывающих повреждения вен и артерий, инфаркты и другие серьёзные проблемы.
Впрочем, энтузиасты из MGH не собираются останавливаться на диагностике, но и предлагают использовать OFDI в других сферах медицины. Ведь если по оптоволокну можно передавать слабый лазерный луч, то его вполне можно сделать и более мощным.
Прибор, модифицированный таким образом, может стать, к примеру, средством лазерной терапии опухолей. Перспектива реализации OFDI кажется Бретту Бума невероятно вдохновляющей: "Мы надеемся, - говорит он, - что медики получат надёжное средство диагностики и лечения, которое будет работать при минимальных вмешательствах в организм пациента".
Источник: http://www.membrana.ru/articles/health/2006/11/21/160000.html
|
|